Design and Technology Progression of Knowledge: EYFS - Y6							
	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Mechanisms (KS1) and Mechanical Systems (KS2)	Not covered	- Explaining how to adapt mechanisms, using bridges or guides to control the movement. - Designing a moving story book for a given audience. - Following a design to create moving models that use levers and sliders. - Testing a finished product	- Selecting a suitable linkage system to produce the desired motion. - Design a wheel. - Selecting materials according to their characteristic s. - Follow a design brief. - Evaluate different designs - Testing and adapting	- Designing a toy which uses a pneumatic system. • Developing design criteria from a design brief. - Generating ideas using thumbnail sketches and exploded diagrams. • Learning that different types of drawings are used in design to explain ideas clearly. - Creating a pneumatic	- Designing a shape that reduces air resistance. - Drawing a net to create a structure from. - Choosing shapes that increase or decrease speed as a result of air resistance. - Personalising a design. - Measuring marking, cutting and assembling with increasing accuracy. • Making a model based on a	- Designing a pop-up book which uses a mixture of structures and mechanisms. - Naming each mechanism, input and output accurately. - Storyboarding ideas for a book. - Following a design brief to make a pop up book, neatly and with focus on accuracy. - Making mechanisms and/or structures using sliders,	- Experimenting with a range of cams, creating a design for an automata toy based on a choice of cam to create a desired movement. - Understanding how linkages change the direction of a force. - Making things move at the same time. - Understanding and drawing cross-sectional diagrams to show the

		seeing whether it moves as planned and if not, explaining why and how it can be fixed. - Reviewing the success of a product by testing it with its intended audience. - To know that a mechanism is the parts of an object that move together. - To know that a slider mechanism moves an object from side to side. - To know that a slider mechanism has a slider, slots, guides and an object.	designs. - To know that different materials have different properties and are therefore suitable for different uses. - To know the features of a ferris wheel including the wheel, frame, pods, a base, an axle and an axle holder. - To know that it is important to test my design as I go along so that I can solve any problems that may occur. - Create a class design criteria. - Design a product for a specific audience in	system to create a desired motion. - Building secure housing for a pneumatic system. • Using syringes and balloons to create different types of pneumatic systems to make a functional and appealing pneumatic toy. - Selecting materials due to their functional and aesthetic characteristics. - Manipulating materials to create different effects by cutting, creasing, folding and weaving. - Using the views of others to improve designs. - Testing and modifying the outcome,	chosen design. - Evaluating the speed of a final product based on: the effect of shape on speed and the accuracy of workmanship on performance. - To understand that all moving things have kinetic energy. - To understand that kinetic energy is the energy that something (object/person) has by being in motion. - To know that air resistance is the level of drag on an object as it is forced through the air. - To understand that the shape of a moving object will affect \dagger how it moves due to air	pivots and folds to produce movement - Using layers and spacers to hide the workings of mechanical parts for an aesthetically pleasing result. - To know that mechanisms control movement. - To understand that mechanisms can be used to change one kind of motion into another. - To understand how to use sliders, pivots and folds to create paper-based mechanisms. - To know that a design brief is a description of what I am going to design and make.	inner-workings of my design. - Measuring, marking and checking the accuracy of the jelutong and dowel pieces required. - Measuring, marking and cutting components accurately using a ruler and scissors. - Assembling components accurately to make a stable frame. - Understanding that for the frame to function effectively the components must be cut accurately and the joints of the frame secured at right angles. - Selecting appropriate

		- To know that bridges and guides are bits of card that purposefully restrict the movement of the slider. - To know that in DT we call a plan a 'design'. - Designing a vehicle that includes wheels, axels and axel holders, that when combined, will allow the wheels to move. - Creating clearly labelled drawings that illustrate movement. - Adapting mechanisms, when: - They do not	accordance with a design criteria. - Making linkages using card for levers and split pins for pivots. - Experimenting with linkages adjusting the widths, lengths and thickness of card used. - Cutting and assembling components neatly. - Evaluating own designs against design criteria. - Using peer feedback to modify a final design. - To know that mechanisms are a collection of moving parts that work	suggesting improvements. - Understanding the purpose of exploded-diagra ms through the eyes of a designer and their client. - To understand how pneumatic systems work. - To understand that pneumatic systems can be used as part of a mechanism. - To know that pneumatic systems operate by drawing in, releasing and compressing air. - To understand how sketches, drawings and diagrams can be used to communicate design ideas. - To know that exploded-diagra ms are used to show how	resistance. - To understand that products change and evolve over time. - To know that aesthetics means how an object or product looks in design and technology. - To know that a template is a stencil you can use to help you draw the same shape accurately. - To know that a birds-eye view means a view from a high angle (as if a bird in flight). - To know that graphics are images which are designed to explain or advertise something. -To know that it	- To know that designers often want to hide mechanisms to make a product more aesthetically pleasing.	materials based on the materials being joined and the speed at which the glue needs to dry/set. - Evaluating the work of others and receiving feedback on own work. - Applying points of improvement to their toys. - Describing changes they would make/do if they were to do the project again. - To understand that the mechanism in an automata uses a system of cams, axles and followers. • To understand that different shaped cams produce different outputs. - To know that

		work as they should - To fit their vehicle design To improve how they work after testing their vehicle. - Testing wheel and axel mechanisms, identifying what stops the wheels from turning, and recognising that a wheel needs an axle in order to move. - To know that wheels need to be round to rotate and move. - To understand that for a wheel to move it must	together as a machine to produce movement. - To know that there is always an input and output in a mechanism. - To know that an input is the energy that is used to start something working. - To know that an output is the movement that happens as a result of the input. - To know that a lever is something that turns a pivot. - To know that a linkage mechanism is made up of a series of levers.	different parts of a product fit together. - To know that thumbnail sketches are small drawings to get ideas down on paper quickly.	is important to assess and evaluate design ideas and models agains \dagger a list of design criteria.		an automata is a hand powered mechanical toy. - To know that a cross-sectional diagram shows the inner workings of a product. - To understand how to use a bench hook and saw safely. - To know that a set square can be used to help mark 90° angles.

		be attached to a rotating axle. - To know that an axle moves within an axle holder which is fixed to the vehicle or toy. - To know that the frame of a vehicle (chassis) needs to be balanced. - To know some real-life items that use wheels such as wheelbarrows , hamster wheels and vehicles.	- To know some real-life objects that contain mechanisms.				
Structures	- To make verbal plans and material choices. - To develop a junk model. - To improve fine motor/scissor	- To learn the importance of a clear design criteria. - To include individual preferences and	- Generating and communicating ideas using sketching and modelling. - Learning about different types of structures, found	- Designing a castle with key features to appeal to a specific person/purpose. - Drawing and labelling a castle design using 2D	- Designing a stable pavilion structure that is aesthetically pleasing and selecting materials to create a desired effect.	- Designing a stable structure that is able to support weight. - Creating a frame structure with a focus on triangulation. - Making a	- Designing a playground featuring a variety of different structures, giving careful consideration to how the

	predictions about, and evaluate different materials to see if they are waterproof. - Making predictions about, and evaluating existing boats to see which floats best. - To test their design and reflect on what could have been done differently. - To investigate how the shapes and structures of a boat affect the way it moves. - To know that 'waterproof' materials are those which do not absorb water.	to improve the strength and stiffness of structures. - To understand that cylinders are a strong type of structure (e.g. the main shape used for windmills and lighthouses) - To understand that axles are used in structures and mechanisms to make parts turn in a circle. - To begin to understand that different structures are used for different purposes. - To know that a structure is something	structures with wide, flat bases or legs are the most stable. To learn how to turn 2d nets into 3d structures. - To understand that the shape of a structure affects its strength. - To know that materials can be manipulated to improve strength and stiffness. - To know that a structure is something which has been formed or made from parts. - To know that a 'stable' structure is one which is firmly fixed and unlikely to change or move. - To know that a 'strong' structure is one which does not break	comparison to the original design. - Suggesting points for modification of the individual designs. - To understand that wide and flat based objects are more stable. - To understand the importance of strength and stiffness in structures. - To know the following features of a castle: flags, towers, battlements, turrets, curtain walls, moat, drawbridge and gatehouse - and their purpose. - To know that a façade is the front of a structure. - To understand	by the class. - Describing what characteristics of a design and construction made it the most effective. - Considering effective and ineffective designs. - To understand what a frame structure is. - To know that a 'free-standing' structure is one which can stand on its own. - To know that a pavilion is a a decorative building or structure for leisure activities. - To know that cladding can be applied to structures for different effects. - To know that aesthetics are how a product	appropriating materials is an important part of the design process. • Understanding basic wood functional properties. - Adapting and improving own bridge structure by identifying points of weakness and reinforcing them as necessary. - Suggesting points for improvements for own bridges and those designed by others. - To understand some different ways to reinforce structures. - To understand how triangles can be used to reinforce bridges. - To know that	what makes a successful structure. - To know that structures can be strengthened by manipulating materials and shapes. - To understand what a 'footprint plan' is. - To understand that in the real world, design, can impact users in positive and negative ways. - To know that a prototype is a cheap model to test a design idea.

	- To know that some objects float and others sink. - To know the different parts of a boat.	that has been made and put together. - To know that a client is the person I am designing for. - To know that design criteria is a list of points to esure the product meets the clients needs and wants. - To know that a windmill harnesses the power of wind for a purpose like grinding grain, pumping water or generating electricity - To know that windmill turbines use wind to turn and make the machines	easily. - To know that a 'stiff' structure or material is one which does not bend easily. - To know that natural structures are those found in nature. - To know that man-made structures are those made by people	that a castle needed to be strong and stable to withstand enemy attack. - To know that a paper net is a flat 2D shape that can become a 3D shape once assembled. - To know that a design specification is a list of success criteria for a product.	looks. - To know that a product's function means its purpose. - To understand that the target audience means the person or group of people a product is designed for. - To know that architects consider light, shadow and patterns when designing.	properties are words that describe the form and function of materials. - To understand why material selection is important based on properties. - To understand the material (functional and aesthetic) properties of wood. - To understand the difference between arch, beam, truss and suspension bridges. - To understand how to carry and use a saw safely.	

		inside work. - To know that a windmill is a structure with sails that are moved by the wind. - To know the three main parts of a windmill are the turbine, axle and structure. - Select and use tools, skills and techniques. - Mark materials before cutting. - Cut paper and other materials with increasing accuracy. - Join materials in a variety of ways e.g. glueing, taping, pinning. - Select new					

		and reclaimed materials and construction kits to build their structure. - Experiment with ways to strengthen their structure. Use simple finishing techniques appropriate for the project.					
Food	- Designing a soup recipe as a class. - Designing soup packaging. - Chopping plasticine safely. - Chopping vegetables with support. - Tasting the soup and giving opinions. • Describing some of the following when tasting food: look, feel, smell and taste.	- Designs smoothie carton packaging by-hand or on ICT software. - Chopping fruit and vegetables safely to make a smoothie - Identifying if food is a fruit or vegetable. - Learning where and	- Designing a healthy wrap based on a food combination which works well together. - Slicing food safely using the bridge or claw grip. - Constructing a wrap that meets a design brief. - Taste testing food combinations	- Designing a recipe for a savoury tart. - Following the instructions within a recipe. - Tasting seasonal ingredients. - Selecting seasonal ingredients. - Peeling ingredients safely. - Cutting safely with a vegetable knife.	- Designing a biscuit within a given budget, drawing upon previous taste testing judgements. - Following a baking recipe, including the preparation of ingredients. - Cooking safely, following basic hygiene rules. - Adapting a recipe to meet the requirements	- Adapting a traditional recipe, understanding that the nutritional value of a recipe alters if you remove, substitute or add additional ingredients. - Writing an amended method for a recipe to incorporate the relevant changes to	- Writing a recipe, explaining the key steps, method and ingredients. - Including facts and drawings from research undertaken. - Following a recipe, including using the correct \dagger quantities of each ingredient. - Adapting a recipe based on research. •

						happens when these foods mix with raw meat or unclean objects. - To know that coloured chopping boards can prevent cross-contamina tion. • To know that nutritional information is found on food packaging. • To know that food packaging serves many purposes.	Fork).
Textiles	- Discuss what a good design needs - Designing a simple pattern with paper - Choose from a variety of textiles and fabric. - Developing fine motor/ cutting skills with scissors	- Use a template to create a design for a puppet - Carefully cut material neatly. - Use joining methods to decorate a puppet - Sequence steps for constructions	- Designing a pouch - Selecting and cutting fabrics for sewing. - Decorating a pouch using fabric glue or running stitch. - Threading a needle - Sewing running stitch, with evenly	- Designing and making a template from an existing cushion and applying individual design criteria - Following design criteria to create a cushion or Egyptian collar. - Selecting and cutting fabrics	- Writing design criteria for a product, articulating decisions made. - Designing a personalised book sleeve. - Making and testing a paper template with accuracy and in keeping with the design criteria. - Measuring,	- Designing a stuffed toy, considering the main component shapes required and creating an appropriate template. - Considering the proportions of individual components - Creating a 3D stuffed toy from	- Designing a waistcoat in accordance to a specification linked to set of design criteria. - Annotating designs, to explain their decisions.. - Using a template when cutting fabric to ensure they achieve the

	- Exploring fine motor / threading and weaving with variety of materials - Use a prepared needle and wool to practise threading. - Reflect on final product and compare to design - To know that a design is a way of planning our idea before we start. - To know that treading is putting one material through an object.	- Reflect on finished product, explaining likes and dislikes - To know that 'joining technique' means connecting two pieces of material together - To know that there are various temporary methods of joining fabric by using staples, glue or pins. - To understand that different techniques for joining materials can be used for different purposes. To	spaced, neat, even stitches to join fabric. - Neatly pinning and cutting fabric using a template. - Troubleshoot scenarios posed by the teacher. - Evaluating the quality of stitching on others' work. - Discussing as a class, the success of their stitching against the success criteria. - Identifying aspects of their peers' work that they particularly like and why. - To know that sewing is a method of	with ease using fabric scissors. - Threading needles with greater independence. - Tying knots with greater independence. - Sewing cross stitch to join fabric. - Decorating fabric using appliqué. - Completing design ideas with stuffing and sewing the edges (Cushions) or embellishing the collars based on design ideas (Egyptian collars). - Evaluating an end product and thinking of other ways in which to create similar items - To know that applique is a	marking and cutting fabric using a paper template. - Selecting a stitch style to join fabric. - Working neatly by sewing small, straight stitches. - Incorporating a fastening to a design. - Testing and evaluating an end product against the original design criteria. - Deciding how many of the criteria should be met for the product to be considered successful. - Suggesting modifications for improvement. - Articulating the advantages and disadvantages of different fastening types.	a 2D design. - Measuring, marking and cutting fabric accurately and independently. - Creating strong and secure blanket stitches when joining fabric. - Threading needles independently. - Using appliqué to attach pieces of fabric decoration. - Sewing blanket stitch to join fabric. • Applying blanket stitch so the spaces between the stitches are even and regular. - Testing and evaluating an end product and giving point for further improvements. - To know that	correct shape. - Using pins effectively to secure a template to fabric without creases or bulges. - Marking and cutting fabric accurately, in accordance with their design. - Sewing a strong running stitch, making small, neat stitches and following the edge. • Tying strong knots. - Decorating a waistcoat, attaching features (such as appliqué) using thread. - Finishing the waistcoat with a secure fastening (such as buttons). - Learning different

		understand that a template (or fabric pattern) is used to cut out the same shape multiple times - To know that drawing a design idea is useful to see how an idea will look.	joining fabric. - To know that different stitches can be used when sewing. - To understand the importance of tying a knot after sewing the final stitch. - To know that a thimble can be used to protect my fingers when sewing.	way of mending or decorating a textile by applying smaller pieces of fabric to larger pieces. - To know that when two edges of fabric have been joined together it is called a seam. - To know that it is important to leave space on the fabric for the seam. -To understand that some products are turned inside out after sewing so the stitching is hidden.	- To know that a fastening is something which holds two pieces of material together for example a zipper, toggle, button, press stud and velcro. - To know that different fastening types are useful for different purposes. • To know that creating a mock up (prototype) of their design is useful for checking ideas and proportions.	blanket stitch is useful to reinforce the edges of a fabric material or join two pieces of fabric. - To understand that it is easier to finish simpler designs to a high standard. - To know that soft toys are often made by creating appendages separately and then attaching them to the main body. - To know that small, neat stitches which are pulled taut are important to ensure that the soft toy is strong and holds the stuffing securely.	decorative stitches. • Sewing accurately with evenly spaced, neat stitches. - Reflecting on their work continually throughout the design, make and evaluate process. - To understand that it is important to design clothing with the client/ target customer in mind. - To know that using a template (or clothing pattern) helps to accurately mark out a design on fabric. - To understand the importance of consistently sized stitches.
Electrical systems	Not covered	Not covered	Not covered	- Carry out research based on a	- Designing a torch, giving consideration	- Designing a torch, giving consideration	- Designing a steady hand game -

(KS2)				given topic (e.g. The Romans) to develop a range of initial ideas. - Generate a final design for the electric poster with consideration to the client's needs and design criteria. - Design an electric poster that fits the requirements of a given brief. - Plan the positioning of the bulb (circuit component) and its purpose. - Create a final design for the electric poster.	to the target audience and creating both design and success criteria focusing on features of individual design ideas. - Making a torch with a working electrical circuit and switch. - Using appropriate equipment to cut and attach materials. - Assembling a torch according to the design and success criteria. - Evaluating electrical products. - Testing and evaluating the success of	to the target audience and creating both design and success criteria focusing on features of individual design ideas. - Identifying factors that could be changed on existing products and explaining how these would alter the form and function of the product. - Developing design criteria based on findings from investigating existing products. - Developing design criteria that clarifies the target user.	identifying and naming the components required. - Drawing a design from three different perspectives. - Generating ideas through sketching and discussion. - Modelling ideas through prototypes. - Understandin g the purpose of products (toys), including what is meant by 'fit for purpose' and 'form over function'. - Constructing a stable base for a game. - Accurately cutting, folding and assembling a net.

				to build simple circuits. - To understand the importance and purpose of information design. - To understand how material choices (such as mounting paper to corrugated card) can improve a product to serve its purpose (remain rigid without bending when the electrical circuit is attached).			
Digital World (KS2)	Not covered	Not covered	Not covered	- Problem solving by suggesting which features on a Micro:bit	- Writing design criteria for a programmed timer (Micro:bit).	- Researching (books, internet) for a particular (user's)	- To understand key development s in thermometer

"

| Vocabulary | design designer
 materials card
 join
 handle test
 healthy chop
 peel | designer brief
 product
 moving picture
 mechanism lever
 slider pivot
 needle thread
 running stitch | brief product
 user
 battery circuit
 switch bulb
 Ingredient
 Peel chop grate
 slice healthy
 Join measure
 wheel axle
 structure | Product user
 Measure mark
 cut
 Lever catapult
 Textiles pattern
 Knot tie off
 Ingredient
 Peel chop grate
 slice healthy | consumer
 modification
 Design criteria
 Adjustment | technique
 production
 Frame structure
 Triangulation
 Strengthen
 Recipe plan | application
 back stitch seam
 allowance turn
 out
 Circuit control |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

